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ABSTRACT 
    
    In this paper, we first presented a parallelized turbo 
decoding algorithm, which is widely used as a tool for 
Forward Error Correction (FEC) . Then, the proposed 
parallelized algorithm was implemented on a Graphic 
Processor Unit (GPU)  board. We analyzed the performance 
of implemented turbo decoder on an Software Defined 
Radio (SDR) -based Long Term Evolution (LTE) system. 
Turbo codes have been adopted in many communication 
standards such as Worldwide Interoperability for 
Microwave Access (WiMAX) , Wideband Code Division 
Multiple Access (WCDMA) , LTE, etc. However, since the 
Maximum a Posteriori (MAP)  decoder, which is a core part 
of turbo decoder, needs excessive memory requirements and 
heavy computational complexity, implementation of turbo 
decoder on SDR system brings about many severe 
difficulties in practice. The proposed parallelization 
algorithm tremendously reduces the decoding time caused 
by the pair of MAP decoders included in turbo decoder.  
 
 

1. INTRODUCTION 
 
Forward Error Correction (FEC) technique for wireless 
signal environments needs a fast and high quality processing 
capability in order to be able to retrieve the transmit 
information from distorted receive data. Turbo code [1] has 
been known as a good error correction method providing 
Shannon’s limit [2] with a relatively simple structure.  
Despite these wonderful features, however, implementation 
of turbo decoder suffers from tremendous amount of 

computational load and large delay time, which brings about 
many practical problems in real-time processing. 
A way of overcoming the problem of heavy computational 
load is to employ a high speed processor that is capable of 
parallel processing.  
Recently, Graphic Processor Unit (GPU) has been 
introduced as a Single Instruction Multiple Data (SIMD) 
parallel processor which supports various applications 
including high speed floating-point parallel operations for 3-
dimensional graphic processing [3].   
In addition, the high-speed applications for GPU are even 
more accelerated with the C-based high-level language, 
Compute unified device architecture (CUDA). Indeed, GPU 
is a lot more flexible than Field Programmable Gate Array 
(FPGA) and a lot faster than Digital Signal Processor (DSP).  
 In this paper, we propose a novel parallelization algorithm 
for high-speed turbo decoder using CUDA that is 
appropriate for SIMD architecture. The proposed algorithm 
is implemented on a GPU board of NVIDIA GeForce GTX 
260. Section 2 shows basic architecture of the implemented 
turbo decoder adopting proposed algorithm, while Section 3 
introduces the proposed algorithm and system 
implementation using the GPU. Section 4 demonstrates the 
system performance obtained from various experimental 
tests, and Section 5 concludes this paper.    
 
 

2. TURBO DECODING ALGORITHM 
 
The terminology, turbo, originates from the operation 
principle of the decoder which enhances its performance by 
having its output fed-back to its input for iterative 
processing, which is very similar to the principle of turbo 
engine adopted in vehicles. This section summarizes the 
basic concept and operational principle of turbo decoder. 
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Figure 1. Architecture of turbo decoder 
   
Figure 1 illustrates a general architecture of turbo decoder. 
Turbo decoder input is Log Likelihood Ratio (LLR) output, 
while the output of turbo decoder is binary bits of hard 
decision. Basically, turbo decoder consists of two MAP 
decoders, interleaver, and deinterleaver. MAP decoders 
shown at the front and back part of Figure 1 is composed of 
SISO (Soft Input Soft Output) decoder of which the output 
is used repeatedly for iterative decoding. 
The first MAP decoder generates soft decision information 
using the received information bits and parity bits, which 
are used by the second MAP decoder as an input after 
rearranging the bit order through interleaving. The second 
MAP decoder also generates soft decision information using 
the received bits that are rearranged by interleaver, parity 
bits, and the output of the first MAP decoder. The output of 
the second MAP decoder is feedback to the first MAP 
decoder for the iterative decoding. This procedure is 
repeated by a preset number of iterations in order to obtain a 
desired BER (Bit Error Rate). 
  
 
3. IMPLEMENTATION OF PARALLELIZATION ON 

GPU 
 
  
 3.1 CUDA (Compute Unified Device Architecture) 
 
In a GPU, there are a lot of Arithmetic Logic Units (ALUs) 
for 3-dimensional graphic processing. CUDA is a C-based 
extended high-level programming environment for using in 
various general applications by appropriately managing the 
large number of ALUs of GPU. Thread in CUDA 
environment denotes a computing unit. Since CUDA 
supports as many threads as the number of computing units 
not the number of cores, GPU can exhibit an extremely 
high-quality parallel processing capability through an 
efficient program coding with the multiple threads [4].    
 

  

  
Figure 2. CUDA kernel architecture 

 
Figure 2 illustrates CUDA kernel architecture [5]. As shown 
in Figure 2, GPU consists of a number of thread blocks, 
while block identifier (ID) and thread ID are properly 
assigned to each block and thread for managing the blocks 
and threads. As all the threads in a block execute the same 
instruction, programmer can control the operations to be 
performed at each thread using block ID and thread ID. 
Consequently, GPU is equipped with a SIMD architecture 
of which the multiple data can be controlled and processed 
through a single instruction. It also implies that GPU is 
advantageous for providing an efficient parallelism using 
multiple components each of which is performing the same 
operation, although it is impossible to perform different 
operations at each of the multiple components in parallel 
like in FPGA.   
 
 3.2 PARALLEL ALGORITHM 
 
For parallelizing the turbo decoder, we consider a method of 
partitioning the entire data block into many sub-blocks 
[6].However, since the procedure of computing the 
information sequence of each sub-block is dependent upon 
one another, which would cause the initial metrics of each 
sub-block to become inaccurate, arbitrary partitioning will 
severely degrade the performance of turbo decoder. Once 
the initial metrics become inaccurate due to partitioning, 
error is spread into all the stages of trellis procedure such 
that the performance degradation becomes worse and worse.  
In order to resolve the problem of error spreading, one could 
increase the training sequence length to enhance the 
reliability of initial metrics. However, to increase the length 
of training sequence brings about excessive time delay and 
extra hardware complexity. Another way of resolving the 
error spreading is to use the metrics obtained in between 
adjacent sub-blocks [7]. However, that algorithm suffers 
from severe performance degradation when the sub-block is 
too short. In addition, the very first decoding generates 
inaccurate soft decision, which causes decoding loss 
iteratively. 
Considering all the problems mentioned above, we propose 
a novel method of partitioning the data block into many sub-
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blocks in such a way that the algorithm of using the metrics 
in between adjacent sub-blocks is improved for maintaining 
a good performance with as short sub-block as possible, 
which brings correspondingly short decoding delay. 
 

                               
 
 
Figure 3. Initial state value computation in the proposed 
algorithm 
 

Figure 3 illustrates how the initial state values are 
computed at each of sub-blocks. As shown in Figure 3, each 
of adjacent sub-blocks computes the forward static metrics 
and backward static metrics to provide   and   for the next 
sub-block to compute the forward and backward static 
metrics iteratively. Using the architecture shown in Figure 3, 
since the next sub-block is provided the starting static 
metrics from the previous sub-block, decoder output can be 
generated rapidly with a high accuracy. Consequently, 
performance degradation due to partitioning can be 
minimized, maintaining a very short decoding delay with a 
short sub-block length.  

Proposed algorithm performs the decoding procedure as 
follows. 
 

 
 
Figure 4. Decoding of N-code word with W partitioned sub-
blocks 
 

N-codeword input is partitioned into W sub-blocks as 
shown in Figure 4.At each pair of adjacent sub-blocks, one 
sub-block computes forward static metrics first while the 
other sub-block computes the backward static metrics first. 
Using (1) and (2), obtained from branch metrics shown in 
(3), forward and backward static metrics are computed and 
the results are stored. 

 
 

 
         (2) 

       
where  

 
 
At each pair of sub-blocks mentioned in step 2), the sub-
block computed the forward static metrics now computes 
the backward static metrics, and vice versa. Note that the 
values for  and  are handed over to be used as starting 
static metrics as depicted in Figure 3. 
While performing step (3), each sub-block computes the 
output value as shown in (4). 
 

 
)           (4) 

 
The output obtained in step (4) is provided to decoder input 
after interleaving or de-interleaving in order to repeat the 
procedures from step (2) by preset number of iterations. 
After performing the above procedures by preset number of 
iterations, final decoder output is obtained through a hard 
decision. 
In the proposed algorithm, since the static metrics at the 
boundary of adjacent blocks are used as starting static 
metrics, the effective length of training sequence is 
increased by the sub-block length at the adjacent block. Due 
to the increased length of training sequence, which will 
enhance the reliability of starting static metrics, the final 
performance is improved. Consequently, performance 
degradation due to short training sequence can be reduced. 
It rather enhances the decoding delay tremendously. 
In short, by exchanging the static metrics between two 
processors associated with adjacent sub-blocks, the 
proposed algorithm has resolved the inherent problem of 
block partitioning method, i.e., performance degradation 
due to the small size of sub-blocks. 
 
 3.3 IMPLEMENTATION 
 
MAP decoder takes the largest part in the operation delay of 
turbo decoder. Among the operations in the MAP decoder, 
operations of (1) and (2) are the major part of MAP decoder. 
Considering that the operations for (1) and (2) are iterative, 
which means that the current values are determined by 
previous values, we have performed the computation of (1) 
and (2) using a parallel processing through the method of 
exchanging the computed values of those two equations 
after partitioning the entire data block into many sub-blocks. 
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Figure 5. Operational architecture of GPU parallelization for 
MAP decoder with 64 sub-block 
 
Figure 5 illustrates kernel architecture designed for CUDA 
programming of our implemented system. As shown in 
Figure 5, parallelization processing of turbo decoding has 
been performed efficiently by assigning as many threads in 
each CUDA block as the number of states in each sub-block, 
while CUDA blocks are assigned as many as the number of 
sub-blocks of turbo decoder  
In our implemented system, interleaving has also been 
performed in high-speed operation using parallelization 
technique. For this, the number of threads should be as large 
as possible for the parallelized operation. Through the 
parallelization coding, GPU can perform the turbo decoding 
as discussed above. Since GPU is a floating-point processor, 
the turbo decoding can be processed using large enough 
soft-decision values. 
 

4. PERFORMANCE EVALUATION 
 
The operation time of our implemented system has been 
measured using NVIDIA GeForce GTX260 to be compared 
to the turbo decoder implemented with Texas Instruments’ 
TMS320C6201 [8]. 
For the experimental tests, a 1/3 coding rate turbo code 
prepared in accordance with 3GPP release 9 [9] has been 
adopted, while some algorithm to calculate the LLR values 
[9] is used for the soft input of turbo decoder.   
For the partitioning, 6144-bit data block is divided into a 
single 6144-bit sub-block, 32 of 192-bit sub-blocks, 64 of 
96-bit sub-blocks, and 128 of 48-bit sub-blocks. 

 
Figure 6. BER performance 

Figure 6 illustrates the BER performance of proposed 
method according to various number of sub-blocks. As 
shown in the figure, performance is degraded as the number 
of sub-blocks is increased, which causes the block size to be 
decreased. 
 Table 1 shows the operation time required for turbo 
decoder according to the various number of sub-blocks. 
 
Number of Sub-
block 

Total Processing 
Time for 6144 bits 

Processing 
Speed 
 

1 10.24ms 600Kbits/s 
32 4.096ms 1.5Mbits/s 
64 2.833ms 2.2Mbits/s 
128 1.708ms 3.6Mbits/s 
 
Table 1. Operation time taken for different number of sub-
blocks 
 
From table 1, our implemented system is 2.5, 3.6 and 6  
times faster than the turbo decoder implemented with Texas 
Instruments’  TMS320C6201 providing 500k bits/s [8] of 
processing speed when the number of sub-blocks is 32, 64 
and 128, respectively. 
 
<64 sub-blocks> 
Method GPU time (µs) %GPU time 
Interleaver+deinterleaver 19.104 0.674 
Memcpy 10.576 0.373 
Other calculation 96.587 3.409 
MAP decoder 2706.96 95.543 
Total time 2833.227 100 
 
 
<128 sub-blocks> 
Method GPU time (µs) %GPU time 
Interleaver+deinterleaver 19.104 1.118 
Memcpy 10.576 0.619 
Other calculation 91.414 5.352 
MAP decoder 1586.96 92.91 
Total time 1708.054 100 
 
Table 2. Computation time for the parallelized Turbo decoder 
 
Table 2 shows a computation time taken for each operation 
required in our implemented system, which has been 
measured using CUDA Visual Profiler provided by 
NVIDIA. In the table, “Memcpy” denotes the procedure of 
memory copy between Central Processing Unit (CPU) and 
GPU, while “other calculation” denotes the procedure of 
data processing of decoder input and hard decision for the 
final decoder output. In addition, “% GPU time” denotes the 
portion of operation time taken by each function in the 
entire GPU processing time.   
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Table 2 illustrates the portion of MAP decoder in the entire 
processing time required to turbo decoder as a function of 
the number of sub-blocks. 
 From Table 2, it can be observed that the total processing 
time is reduced by about 1.6 times as the number of sub-
blocks is increased by twice. Since the operation is not 
partitioned at bridge areas where the values are exchanged 
between sub-blocks and where the sub-blocks are divided 
and merged, the operation time is enhanced only by 1.6 
times instead of 2 times while the number of sub-blocks is 
increased by twice. As the parallel processing in GPU can 
be performed using a large number of threads 
simultaneously, the speed-up operation can be further 
enhanced as the number of sub-blocks is increased. 
 
 

5. CONCLUSION 
 
We designed and implemented a parallel processing turbo 
decoder by fully exploiting the parallel processing capability 
of GPU. 
Operation speed in our implemented system has been shown 
to be 1.5, 2.2 and 3.6 Mbits/s when the number of sub-
blocks is 32, 64 and 128, respectively, which means the 
processing time can be saved further as the number of sub-
blocks is increased.  The partitioning into 128 sub-blocks 
provides about 6 times faster processing time compared to a 
normal turbo decoder, the 0.15dB degradation seems to be 
tolerable. It has also been found that our implemented 
system with 128 sub-blocks is about 6 times faster than 
TMS320C6201’s turbo decoder. From various experimental 
tests, we conclude that the proposed turbo decoder which 
fully exploits the parallel processing capability with the sub-
block partitioning is suitable for speed-up operation of 
modern communications including LTE.      
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