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Abstract—In this paper, we statistically analyze the impact reduces the convergence speed. Furthermore, the downgscali
of the quantization and the fixed-point implementation on tre  factor needs to be optimized for a specific number of itenatio
performance of the min-sum LDPC layered decoding algorithm In this paper we propose a low-complex freezing-based min-

In particular, we show how the growth of the LLR (Log of decodi lgorithm t h wrati bl
Likelihood Ratio) values under finite precision results in he SUM decoding algorthm to overcome the saturation probiem

saturation and performance degradation. We then propose a and improve the decoding performance for the fixed-point
freezing-based min-sum decoding algorithm for the fixed-pmt implementation.

implementation. We show that the proposed approach overcoes  The paper is organized as follows. In Section II, we intro-
the saturation problems at high SNRs and improves the decody duce the protograph LDPC codes and provide the background

performance drastically. Furthermore, we discuss an optimum . . . .
uniform quantization scheme, which minimizes the quantizon ~Of mMin-sum layered decoding algorithm. In Section IIl, we

error of the channel LLR values. statistically analyze the impact of the quantization and th
Index Terms—Belief propagation, Fixed-point implementation, ~ fixed-point implementation on the performance of the min-
LDPC codes, min-sum decoding algorithm. sum layered decoding algorithm. Furthermore, we discuss an

optimum uniform quantization scheme, which minimizes the
guantization error of the channel LLR values. In Section 1V,
Low Density Parity Check codes (LDPC) have recently reve propose the freezing-based min-sum decoding algorithm.
ceived considerable attention in the error control codiefilfi We show the simulation results in Section V. We then conclude
due to the low complexity of their decoding algorithms [1]the paper in Section VI.
Furthermore, this class of codes performs near the Shannon
bound for long enough block lengths. Il. LDPC CODES AND MIN-SUM LAYERED DECODING
Among different families of decoding algorithms, the well-
known belief propagation (BP) algorithm provides a good de- A low-density parity-check code is defined by a spavsex
coding performance [2]. However, BP algorithm requiregéar N’ parity check matrix, wheré/’ represents the number of
hardware complexity. A simplified variation of BP algorithmparity checks andV’ represents the number of codeword’s
called min-sum decoding algorithm, significantly redudes t bits. The parity check matriHl of an LDPC code can be
hardware complexity at the cost of performance degradatidifistrated by a Tanner graph, whefg andVy denote the set
Recently, the normalized min-sum decoding algorithm h#&§ check nodes and variable nodes respectively. LDPC codes
been preferred in many practical and finite precision appfre usually decoded using message passing algorithms. One
cations since it provides acceptable decoding performasceimportant subclass of these algorithms is belief propagati
compared to BP algorithm for regular codes [3]. Howeve(BP) algorithm. In this algorithm, the CNs and VNs pass their
for the most irregular LDPC codes, the normalized min-subgliefs or probabilities over the corresponding Tannepigra
decoding algorithm performs poorly under finite precisioﬁ-here exists several realization of BP algorithm. The most
implementation [4], [5]. Most of irregular LDPC codes havévell-known realization is the Sum-Product (SP). Howevrs t
a large amount of low-degree variable nodes. These vadigorithm requires large amount of hardware complexity. On
able nodes require more number of iterations to converlite other hand, min-sum algorithm is a suboptimal variation
as compared to high-degree variables nodes. Furtherm@eSP, which provides less complexity in price of degradatio
finite precision decoding further decreases the convergefiz performance.
rate of the low-degree variable nodes due to the quantizatio Consider the binary phase-shift keying (BPSK) modulation
effects. In [6], [7], authors propose different variations and additive white Gaussian noise (AWGN) channel. The
min-sum algorithm to improve the decoding performance ggception corresponding to thih bit can be represented as:
the cost of slower convergence rate and higher hardware= v'Pb; + n;, where P denotes the transmitted power,
complexity. For instance, in [6], the authors proposed that b; € {—1,1} andn; is a zero-mean Gaussian variable with
variable nodes can use a down-scaled intrinsic informatigariance of 2. We define the conditional Log-Likelihood
iteratively to improve the reliability of extrinsic inforation Ratios (LLR) as follows:L%" = log% = Zy;. If
at the variable nodes. The down-scaling in intrinsic valuéss are equiprobable, then we have the following distribution

I. INTRODUCTION
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for L% « At iteration k and layerl:
p(d?) = IOFOb(Lp-r =) - Each check node ath layer receives the following
o Lo? (a— 2F )2 Lo? (a4 2E messages from its VN nelghbors
B R oyt () = L1 k) — py (k= 1) (2)

44/2m
The LLR values (") are the input to the channel decoder  for j ¢ N and1 <i < Z. We also havel.? (k) =
block. We next discuss min-sum layered decoding algorithm LM (k — 1)_

' over protograph codes and show how the LLR values are _Each check node will then send the following value to

utilized in the decoding process. its VN neighbors

AI. Pr_or':ograph LDPC codes and min-sum layered decoding Pet sy, (k) = EC?Z‘ peN \{ }|Pvp—>c (k)] (3)

algorithm : .
The structure-based family of LDPC codes has found where .t ., (k) = HPGNCZ.\{J'} sQr(p%—wi (k)) with

considerable attentions as it simplifies the architecture o  Sgr.) denotes the sign operatar.is the scaling factAor.
the decoder drastically. Among the members of this family, ~Definemi(k) £ argmingen, [p,, . (k)| andni(k) =
protograph-based LDPC codes have been frequently appeared arg mmpeNl\ml(k) |pvpﬁc k3| Therefore, Eq. 3 will be

in the industry [8]. A protograph is a relatively small Tanne  gimplified as:

graph, from which a larger graph can be built up by the follow- el v, (k>| LK), j 2 ml(k):
ing copy-and-permute procedure. The protograph is cogied Pt sy (k) = Pu ml (k) ] ah
times, whereZ denotes the lifting factor. The identical edges G0 Setu; (B) Ip Lu(B)], G = mbk).
will be then permutated among the corresponding replicas. h al n l(k)d % d ‘
Let the M x N matrix H, denote the adjacency matrix of the * The posterlgsr LLR value is updated as:

protograph. In this work, we only consider protographs with « Hard deC|S|ons are then made based on the sign of the
parallel edges, and so the entriesk®f belong to{0,1}. We posterior LLR values. The syndrome of the codeword is
also defineIgS)Xz as aZ x 7 identity matrix, circularly shifted then checked in order to detect the error.

to the right bys positions. The adjacency matrix of the derive
LDPC code, i.eH, can be characterized as follows: 1) Repla
every “0"inH, by 0z, where0z z denotes theZ x Z zero
matrix. 2) Replace every “1" i, by IZXZ, where the values
of s are randomly chosen frorﬁ) ,Z — 1]. Therefore, [1l. FIXED-POINT EFFECTS

the size of matrixH is MZ x NZ. In protograph-based |n order to characterize the trade-offs between hardware
LDPC codes, theZ replicas of each CN in the protographcomplexity and decoding performance, the effects of finite
form a layer. Hence, the CNs of the LDPC code can hgrecision should be analyzed. The finite-precision imple-
represented bycy = (J;Y, C!, whereC! = {c},---,c4} mentation of LDPC decoding requires the following steps
denotes the set of check nodes in thie layer. Note that 1- Quantization of the channel LLR values 2- Fixed-point
each layer consists of a set of contention-free CNs (i.@y, oimplementation of decoding algorithm. For the first step, we
one CN can access a given VN memory at a precise timgpvise an optimum uniform quantizer (in Mean Square Error
which can be processed in parallel without contention. In 0MSE) sense) for the channel LLR values and characterize
design, each decoding iteration consistsiéfsub-iterations, the underlying trade-offs. We then analyze the performarfice

corresponding to each layer. For each layer, all the cheglin-sum decoding algorithm under finite precision constrai

nodes update their values in parallel. This process will g0 @ur analysis in this section will be accounted as the basis fo

in serial for different layers until all the check nodes utgdathe proposed algorithm in the subsequent section.
their values. These types of decoding algorithms are mainly

called “Layered Decoding” in LDPC literatures [9]-[11]. .e A+ LLR guantization
Nz = {p|v, is connected te!} denote the index sets of the In this part, we devise an optimum uniform quantizer (in
neighbors of the check nodé The min-sum layered decodingMSE sense) for the channel LLR values. In Eq. 1, we showed
algorithm can be then summarized as follows: the distribution of LLR for the BPSK modulation over AWGN

« Initialization: Fork = 0, the check-to-variable messageschannel- Let)” () denote the g-bit quantizer with the step

size A, defined as foIIows
Pl ,(0), for 1 < i < Zand1 < | < M are (21— 1A, 2> 26’2*3A;

?n the next section, we investigate the impact of the quanti-
Fation and the fixed- -point implementation on the perforneanc
of the min-sum layered decoding algorithm.

initialized to zero. Furthermore[?*°(0) = L', for Q@) 24 |2+ LA, —ZoIA < g < 2B
psl A 2 ’ p )
1 <j < NZ, whereL;” (k) denotes the postenor LLR —20- 1A, x < AN,
value corresponding to thgh variable node at iteration Flg 1 shows mean square quantlzat|0n error of LLR values, i.
k and layerl. ES [LF —Qv2 (L] } as a function of quantizer step size

. . _ _ . (A). As can be seen, for a fixed number of bits, quantization

This algorithm is known as the normalized min-sum layeredod@g in ith Il val i . d | afr
LDPC literatures, however, for simplicity we call it minyadayered decoding with small values O step size introduces large amount - err.
in this paper. due to the saturation. However, large values of step size wil
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not capture the required resolution for high-probable ealu 10°
of LLR, which again results in a significant error. Therefore

there exists some tradeoffs for the value of the step siz =~ f---ooooeeooee
The following theorem characterizes the optimum uniforn 10° £ B
guantizer, which minimizes the mean square quantizatiar er

—SNR=0dB
---SNR=5 dB
-=SNR=10dB ]

of LLR values. H)J
=107
. (z—)? (y=m?
Theorem 1. Definef,, s(z,y) & —— (e_ T e m )
and g, s(z, y) £ Q(=L) — (L), where Q(z) = 107
= \/%e‘éz dz denotes the Q-function. LeX,y denote the | | |
optimum value ofA, which minimizes MSE of LLR quantiza- 10 10° 107 10 10°
tion. We then have)op = mina C;U(A), where
20711
%,U(A) =—(P+ 02) +Z A2;2 (92\/2?g (af{A, ai’_fl) IFDig;liol\\/\Alzgn square quantization error v.s. quantizer spfer g = 8 and
i=—2a-1 - - '
4 A
+ a®B g8 )—Az’ [—( al® \ o . ) )
g—i“f%( w i) 02 fsz%( n ) B. Fixed-point implementation of min-sum layered decoding
algorithm
AN JYAN ) 2\/ﬁ ( [PIANNSN VAN
+f*2ff-%(a” ) o2 ng%(a" ) In this part, we analyze the impact of fixed-point im-
B (an aqu)) (5) plementation on the _performance of the min-sum Iayered
g,zf 2 (¥ A decoding algorithm without early stopping (i.e. using fixed
—00, n=—21"1 number of iterations). For our analysis, we consider two @sod
anda?® =< A 207141 <p <297t -1 of 1) floating-point operations and 2) fixed-point operasion
0, n=24"1 Furthermore, we pick the layered decoding design in our

analysis. For the floating-point operations, we utilize thie-
Proof: The optimum A, in mean square sense, carsum algorithm, where all the operations occur in floatingypo

be characterized as followsAgy = mina ffooo {x — mode. However, in the fixed-point implementation, we assume
A 2 that the mathematical operations happen over the fixed numbe
QT (I)} p(x)dz. We then have, of bits. In this case, if an operation results in a number hic
o0 . .
/ [w _ Qq’A(:C)rp(:v)d:v exceeds the maximum allowed number of bits, the decoder
o clips the value to the nearest allowable value.
20711 20711
_ / (- AiPp(r)dr= Y [W
i=—2071 i=—271 e ot At igh
ol ol ofh BEe e
X / p(x)dx — 2Ai/ xp(x)dx —i—/ x“p(z)dx
ad® a®® a®® 107 i E
ga-1_1 :
L2 A _qA ECa |
= Z [§A ! (g”f,&(o‘% ;o) @
i=—20—1 o . ; i
q,A 0 —MCS2, floating point 3
A q a i+1 -+ MCS6, floalin_g poir?t
+9_ap 2 (al®,08)) =280 | ap(a)de . S veamanas ||
o2 o al ---MCS6, fixed point 6.1
4 -%X-MCS10, fixed point 6.1]
+ _(P + o ) (6) 0 2 SNR;(dB) s 0 iz
Thé integration part can be easily derived using change ..
variables. [ |

Fig. 2. Comparison between floating-point and fixed-poinplamentation of
Fig. 1 al h thai\ ] . . £ ti f min-sum layer decoding algorlthm for (672,336) irreguldDRC code and

9. also shows opt IS a@n Increasing Tuncion Ot yigerent modulation schemes in IEEE 802.11ad standare. figure shows
the channel SNR. For this simulation, we fix the transmittage performance after 8 number of iterations.

power atP = 10watt and change the channel noise power in

order to get different channel SNRs. It can be seen from Eq. 1Fig. 2 shows the performance of both floating and fixed

as channel SNR increaseg;:) becomes wider, which resultspoint implementations for 672-bit LDPC codes with rate of

in a larger values fo\qp. Next, we characterize the impactthe%. It also compares the decoding performance for different
of the fixed-point implementation on the performance of thmodulation schemes of IEEE 802.11ad standard [12] (more
LDPC decoding. information about this standard as well as different Motiata
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and Coding Schemes (MCS) are provided in Section V). As V. A FREEZING-BASED LOW-COMPLEX MIN-SUM

can be seen, for small values of SNR, the fixed point scheme ALGORITHM

provides a similar performance as the float point one. Howeve In this section, we propose a freezing-based min-sum al-

after a certain point as channel SNR increases, the fixed pQidyithm, which overcomes the saturation problem. In Fig. 3,

scheme diverges. In order to understand this behavior, W& hserved that as the number of iterations increases, the

numerically analyze the Probability Density Function (DR | R values start growing up. However, due to the saturation,

of the extrinsic messages. these values can not exceed the allowable range. In such, case
the saturated LLR values start moving toward zero, which is
not desirable. In order to overcome this problem, we freeze

g After 1 iteration After 3 iterations After 8 ierations the posterior LLR values as soon as they reach the saturation
o0 0. .
g : regions.
£ oo oos Let IL(k) denote the saturation indicator of the posterior
° J
oo ooz oy LLR values corresponding to thgh variable node at timé
] l
£ S0 io 302010 0 10 20 3 40 50 04030 20-10 0 10 20 3 40 50 80 20-3020-10 0 10 20 30 40 50 and |aye|’l- We then han;' (k) = }7}%(L_l])S (k))u Where
2 VN value VN value VN value
E After 1iteration After 3 iterations After 8 iterations F ( ) _ 0, 2Rl <y < B 1; (7)
g : ' _ R 1, otherwise
EO . 0c2 oggy - fnarionn el messsge Define the saturation function as
- .005
g 0.01 0.01
é ) _2R717 2z < _2R71;
0 0 -16 - -8 -
E 16 -12 -8 \—IAN \/GaILfe 8 12 16 16 -12 -8 {;N\fallfe 8 12 16 16 -12 -8 VAN \fallfe 8 12 16 SR(Z) AL z, _2R71 <2< 2R71 _ 17 (8)

oft=1 1, z>2R-1_1, ) )
for z € Z. The proposed fixed-point and freezing-based min-
Fig. 3. Normalized histogram of the VNs of degree 3 for (63B)3irregular sum d_efm_d'”g algorlthm can be summarized as_follows.
LDPC and channel SNR of 0dB — (top) floating-point min-sumekeyl « Initialization: For k& = 0, the check-to-variable mes-
decoding, (bottom) 4.3 fixed-point min-sum layered decgdin sages are initialized to zero. Furthermolé;.,so(o) _
QFrtAm(L) and IL(0) =0 for 1 < j < NZ.
« At iteration & and layeri:

Fig. 3 shows the PDF of the extrinsic messages updated _ g5ch check node dlth layer receives the following
at VNs for both floating and fixed-point schemes. For the messages from its VN neighbors:

fixed-point analysis, we consider 4.3 quantization scheme. Do et (k) =
Fig. 3 (top) shows the dynamic of the VNs (of degree 3) for o a1
the floating-point scheme. As can be seen, as the number of Sr L? (k) — Pl v, (k- 1))7 Ijl-(k) =0;
iterations increases the LLR values start growing. The drigh S (P (ke THE) = 1

. . . R\ L5 ( ) s j( ) -
value of LLR in each VN represents less uncertainty in the 9
corresponding vote. However, in fixed-point implementatio ©)

) . ps0 _
we have a few number of bits to store the values of extrinsic for j & N05: andl <i < Z. We also haveLj (k) =

M
messages. Therefore, these values become saturated as theyL?S (k—1). . )
pass the allowable range of variations. For instance, Fig. 3 - Each check node will then send the following value to

(bottom) shows the impact of saturation /at= 3. Another its VN neighbors
impact of the saturation can be observed at 8. As can be Pcﬁ—wj(k) =
seen, after 8 iterations, the extrinsic values will be atbzero g (Ecg,uj (k) | (k)D 2 ml (k);
with higher probability as compared ko= 3. This behavior is R o " p”mgm—wi v AN
not desirable. From Eq. 2 and Eq. 4, we can easily show that S Feb v k i — ml(k
— o Py cl , J=my .
E1(E) = L1 0) 4 g () — oy, (k1) Assume R P @) o
21 T uA i i ) where m:(k), ni(k) and ., (k) are as defined in
LE7 (k) = Qfax, WhereQifiax > 0 denotes the maximum Section II-A. Y3

allowable value of the quantizer.gf. _,, (k) > p.i_,, (k—1),
! A oo v
thenL> (k) = Q%ﬁax- Howe\ger, ifpet o, (K) < pet s, (K=1), LSy = Do (k) + pet _yo, (k). Ij(k) = 0;

then we havel?' (k) < L'~ (k) = Q&%&x. Therefore, satu- j L k), ILk) = 1.
ration can decrease the posterior probability, as we obdérnv  « Hard decisions are then made based on the sign of the

Fig. 3 (bottom). In the next section, we propose an algorjithm  posterior LLR values. The syndrome of the codeword is
which overcomes the saturation defects. then checked in order to detect the error.

o The posterior LLR value is updated as:

Fig. 4 shows the block diagram of the freezing-based min-

sum layered decoding algorithm. As can be seen, in the

2This quantization scheme implies 4bits for the integer abiisJor the p_roposed algomhm' the check noqe operatlpns O?Cur II‘? R
fraction part. bits. However, variable nodes require R+1 bits. This design
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Channel Input

For instance, after 8 iterations, the extrinsic values Wwél
around zero with negligible probability as compared:te- 3.
CN Message

Memory
R bits

V. SIMULATION RESULTS

LLR Memory
Corresponding to V;
(R+1) bits

Next, we show the performance of the proposed
algorithm. All the simulations were performed using
Lys WiGIgIEEE\802.11ad LDPC codes [12]. Here, we show the
simulation results for the following schemes: MCS2, MCS6
and MCS10, where they utilize BPSK, QPSK and 16QAM

Saturate

R bits modulations respectively. Furthermore, all these scheames
672-bit irregular protograph LDPC codes with the rate%of

Myjcit

Moailvi

Min-sum for Check )
Node Ci! 10

CN Message

v
Scaling
a=4/3
}
o

Fig. 4. Block diagram of the proposed freezing-based min-dayered
decoding algorithm.

BER

—MCS?2, fixed point 6.1 )
—=-MCSB8, fixed point 6.1 |*
-6-MCS10, fixed point 6.1
—MCS2, floating point
---MCSB, floating point
-+ MCS10, floating point

requires only one saturation unit, which further reduces th
implementation complexity. As we mentioned in the algarith E " sNR@B) i0

an indicator bit is required to monitor the saturation stadi

e'_aCh V"?‘”al?'e_ node. In order to decrease the number of mt”_“ﬁig. 6. Comparison between floating-point and the proposeezing-based

bits, this bit is generated from the stored LLR values usingin-sum layered decoding algorithm for (672,336) irregW®PC code and

the circuit logics. The saturation indicator bit activatike different modulation schemes in IEEE 802.11ad standard.

writing disable switch of thegth variable node. Furthermore,

this bit is connected to the select input of Multiplexer B, Fig- 6 compares the performance of the proposed freezing-
which activates the zero input of the Multiplexer, when thBased min-sum layered decoding algorithm with the floating-
variable node value is in the saturation region. As can be,seB0int one after 8 decoding iterations. The freezing-basded a
in this design Multiplexer B is placed before CN memorgorithm is implemented under 6.1 bit constraint. Furthenano
unit, hence, it is not part of the critical path. HoweversthiFig- 6 also compares the decoding performance for different
design results in one time-step delay in Eq. 9 Wﬁéfk) modulation schemes. As can be seen, the proposed algorithm
becomes one. Our simulation results, however, confirm ttitercomes the saturation problem and provides a very close
the performance loss is negligible as compared to the aigierformance to the floating-point scheme, which is the witem
case, where Multiplexer B is placed in critical path and raftéeference for the fixed-point implementation.

the memory unit. Fig. 5 shows the PDF of the extrinsic

After 1 iteration After 3 iterations After 8 iterations

normalized histogram

-16 12 8 4 0 4 B 12 16 o -6 12 8 4 0 4 8 12 16 16 12 8 -4 0 4 8 12 16
VN value VN value VN value

Fig. 5. Normalized histogram of the VNs of degree 3 for (63B)3irregular
LDPC and channel SNR of 0dB for the proposed freezing-basedsmm
layered decoding algorithm.

_ SNR (@B) SNR (dB)
messages updated at VNs for the proposed freezing-based min
sum layered decoding algorithm. As can be seen the proposgdy. sit precision for freezing-based min-sum layeredating algorithm—

algorithm overcomes the saturation problem of Fig. 3 (bojto (left) MSC2 and (right) MCS10.
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Fig. 7 (left) and Fig. 7 (right) compare the performancea]
of the proposed algorithm with the floating-point min-sum
layered decoding under different bit precisions for MCS#8 an [5]
MCS10 of IEEE 802.11ad standard respectively. As can be
seen, as the number of bits increases the performance [8]f
the proposed algorithm becomes better. Furthermore, ftir bo
modulation schemes and under 4.0 bit constraint, the peapos
freezing-based algorithm provides the similar perforneattc
the floating-point approach.

(7]

J. Zhang, M. Fossorier, and D. Gu, “Two-dimensional eotion for min-
sum decoding of irregular Idpc codesEEE Communications Letters
vol. 10, mar 2006.

J. Chen, R. Tanner, C. Jones, and Y. Li, “Improved min-sienoding
algorithms for irregular Idpc codes,” iinternational Symposium on
Information Theory sept. 2005.

D. Oh and K. Parhi, “Performance of quantized min-sum oding
algorithms for irregular Idpc codes,” itEEE International Symposium
on Circuits and Systempp. 2758 —2761, may 2007.

S. Kim, G. Sobelman, and H. Lee, “Adaptive quantizationmin-sum
based irregular Idpc decoder,” ilEEE International Symposium on
Circuits and Systemsnay 2008.

As can be seen, the proposed fixed-point decoder reaches tBieJ. Thorpe, “Low-density parity-check (Idpc) codes douasted from

the floating-point performance under low hardware complex-
ity. The impact of quantization on the decoding performancga]
has been discussed in several literatures. For instan¢&3jn
authors investigated the impact of fixed-point quantizatidl0l
on the performance of sum-product decoder and proposed a
dually-quantized sum-product decoder to mitigate the rerrpi]
floor. They reported the results for the SNRs between 2.5dB
and 6.5dB. However, the proposed freezing-based approa[@lgﬂ,
requires less hardware complexity and provides a wider op-
erating range of SNRs for a fixed number of iterations. A3l
another alternative, authors in [6] suggested that thealobei
nodes can use a down-scaled intrinsic information iteghtito
improve the reliability of extrinsic information at the valle
nodes for the fixed-point implementation. This approach re-
quires different weights for different VNs, depending omrith
degrees, which increases the decoder complexity. Furthrerm

the down scaling factor needs to be optimized for a specific
number of iterations. As another drawback, the down-sgalin
weights reduce the convergence speed of the high degree
variable nodes. The proposed freezing-based approaclisin th
paper, requires less hardware complexity. Furthermore, we
compared the results with the floating point alternativeicivh

is the ultimate reference.

VI. CONCLUSION

In this paper, we analyzed the impact of the quantization
and the fixed-point implementation on the performance of
the min-sum layered decoding algorithm. We then proposed
a freezing-based min-sum decoding algorithm for the fixed
implementation. We showed that the proposed approach over-
comes the saturation problems at high SNRs and improves the
decoding performance drastically. Furthermore, we devise
optimum uniform quantization scheme, which minimizes the
guantization error of the channel LLR values. Our simulatio
results show that the proposed algorithm can almost reach th
floating-point decoding performance under 4.0 quantipatio
scheme.
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