

PARALLELIZATION ALGORITHM FOR TURBO
DECODING AND ITS IMPLEMENTATION ON GPU FOR

SDR-BASED LTE SYSTEM

Saehee Bang (HY-SDR Research Center, Hanyang Univ., Seoul, South Korea;
say_0618@dsplab.hanyang.ac.kr); Chiyoung Ahn (HY-SDR Research Center, Hanyang

Univ., Seoul, South Korea; ahncy@dsplab.hanyang.ac.kr); Sungsoo Ahn (Myongji
College; ssan@mjc.ac.kr); and Seungwon Choi* (corresponding author, HY-SDR

Research Center, Hanyang Univ., Seoul, South Korea; choi@ieee.org)

ABSTRACT

 In this paper, we first presented a parallelized turbo
decoding algorithm, which is widely used as a tool for
Forward Error Correction (FEC) . Then, the proposed
parallelized algorithm was implemented on a Graphic
Processor Unit (GPU) board. We analyzed the performance
of implemented turbo decoder on an Software Defined
Radio (SDR) -based Long Term Evolution (LTE) system.
Turbo codes have been adopted in many communication
standards such as Worldwide Interoperability for
Microwave Access (WiMAX) , Wideband Code Division
Multiple Access (WCDMA) , LTE, etc. However, since the
Maximum a Posteriori (MAP) decoder, which is a core part
of turbo decoder, needs excessive memory requirements and
heavy computational complexity, implementation of turbo
decoder on SDR system brings about many severe
difficulties in practice. The proposed parallelization
algorithm tremendously reduces the decoding time caused
by the pair of MAP decoders included in turbo decoder.

1. INTRODUCTION

Forward Error Correction (FEC) technique for wireless
signal environments needs a fast and high quality processing
capability in order to be able to retrieve the transmit
information from distorted receive data. Turbo code [1] has
been known as a good error correction method providing
Shannon’s limit [2] with a relatively simple structure.
Despite these wonderful features, however, implementation
of turbo decoder suffers from tremendous amount of

computational load and large delay time, which brings about
many practical problems in real-time processing.
A way of overcoming the problem of heavy computational
load is to employ a high speed processor that is capable of
parallel processing.
Recently, Graphic Processor Unit (GPU) has been
introduced as a Single Instruction Multiple Data (SIMD)
parallel processor which supports various applications
including high speed floating-point parallel operations for 3-
dimensional graphic processing [3].
In addition, the high-speed applications for GPU are even
more accelerated with the C-based high-level language,
Compute unified device architecture (CUDA). Indeed, GPU
is a lot more flexible than Field Programmable Gate Array
(FPGA) and a lot faster than Digital Signal Processor (DSP).
 In this paper, we propose a novel parallelization algorithm
for high-speed turbo decoder using CUDA that is
appropriate for SIMD architecture. The proposed algorithm
is implemented on a GPU board of NVIDIA GeForce GTX
260. Section 2 shows basic architecture of the implemented
turbo decoder adopting proposed algorithm, while Section 3
introduces the proposed algorithm and system
implementation using the GPU. Section 4 demonstrates the
system performance obtained from various experimental
tests, and Section 5 concludes this paper.

2. TURBO DECODING ALGORITHM

The terminology, turbo, originates from the operation
principle of the decoder which enhances its performance by
having its output fed-back to its input for iterative
processing, which is very similar to the principle of turbo
engine adopted in vehicles. This section summarizes the
basic concept and operational principle of turbo decoder.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

338

Figure 1. Architecture of turbo decoder

Figure 1 illustrates a general architecture of turbo decoder.
Turbo decoder input is Log Likelihood Ratio (LLR) output,
while the output of turbo decoder is binary bits of hard
decision. Basically, turbo decoder consists of two MAP
decoders, interleaver, and deinterleaver. MAP decoders
shown at the front and back part of Figure 1 is composed of
SISO (Soft Input Soft Output) decoder of which the output
is used repeatedly for iterative decoding.
The first MAP decoder generates soft decision information
using the received information bits and parity bits, which
are used by the second MAP decoder as an input after
rearranging the bit order through interleaving. The second
MAP decoder also generates soft decision information using
the received bits that are rearranged by interleaver, parity
bits, and the output of the first MAP decoder. The output of
the second MAP decoder is feedback to the first MAP
decoder for the iterative decoding. This procedure is
repeated by a preset number of iterations in order to obtain a
desired BER (Bit Error Rate).

3. IMPLEMENTATION OF PARALLELIZATION ON

GPU

 3.1 CUDA (Compute Unified Device Architecture)

In a GPU, there are a lot of Arithmetic Logic Units (ALUs)
for 3-dimensional graphic processing. CUDA is a C-based
extended high-level programming environment for using in
various general applications by appropriately managing the
large number of ALUs of GPU. Thread in CUDA
environment denotes a computing unit. Since CUDA
supports as many threads as the number of computing units
not the number of cores, GPU can exhibit an extremely
high-quality parallel processing capability through an
efficient program coding with the multiple threads [4].

Figure 2. CUDA kernel architecture

Figure 2 illustrates CUDA kernel architecture [5]. As shown
in Figure 2, GPU consists of a number of thread blocks,
while block identifier (ID) and thread ID are properly
assigned to each block and thread for managing the blocks
and threads. As all the threads in a block execute the same
instruction, programmer can control the operations to be
performed at each thread using block ID and thread ID.
Consequently, GPU is equipped with a SIMD architecture
of which the multiple data can be controlled and processed
through a single instruction. It also implies that GPU is
advantageous for providing an efficient parallelism using
multiple components each of which is performing the same
operation, although it is impossible to perform different
operations at each of the multiple components in parallel
like in FPGA.

 3.2 PARALLEL ALGORITHM

For parallelizing the turbo decoder, we consider a method of
partitioning the entire data block into many sub-blocks
[6].However, since the procedure of computing the
information sequence of each sub-block is dependent upon
one another, which would cause the initial metrics of each
sub-block to become inaccurate, arbitrary partitioning will
severely degrade the performance of turbo decoder. Once
the initial metrics become inaccurate due to partitioning,
error is spread into all the stages of trellis procedure such
that the performance degradation becomes worse and worse.
In order to resolve the problem of error spreading, one could
increase the training sequence length to enhance the
reliability of initial metrics. However, to increase the length
of training sequence brings about excessive time delay and
extra hardware complexity. Another way of resolving the
error spreading is to use the metrics obtained in between
adjacent sub-blocks [7]. However, that algorithm suffers
from severe performance degradation when the sub-block is
too short. In addition, the very first decoding generates
inaccurate soft decision, which causes decoding loss
iteratively.
Considering all the problems mentioned above, we propose
a novel method of partitioning the data block into many sub-

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

339

blocks in such a way that the algorithm of using the metrics
in between adjacent sub-blocks is improved for maintaining
a good performance with as short sub-block as possible,
which brings correspondingly short decoding delay.

Figure 3. Initial state value computation in the proposed
algorithm

Figure 3 illustrates how the initial state values are
computed at each of sub-blocks. As shown in Figure 3, each
of adjacent sub-blocks computes the forward static metrics
and backward static metrics to provide and for the next
sub-block to compute the forward and backward static
metrics iteratively. Using the architecture shown in Figure 3,
since the next sub-block is provided the starting static
metrics from the previous sub-block, decoder output can be
generated rapidly with a high accuracy. Consequently,
performance degradation due to partitioning can be
minimized, maintaining a very short decoding delay with a
short sub-block length.

Proposed algorithm performs the decoding procedure as
follows.

Figure 4. Decoding of N-code word with W partitioned sub-
blocks

N-codeword input is partitioned into W sub-blocks as
shown in Figure 4.At each pair of adjacent sub-blocks, one
sub-block computes forward static metrics first while the
other sub-block computes the backward static metrics first.
Using (1) and (2), obtained from branch metrics shown in
(3), forward and backward static metrics are computed and
the results are stored.

 (2)

where

At each pair of sub-blocks mentioned in step 2), the sub-
block computed the forward static metrics now computes
the backward static metrics, and vice versa. Note that the
values for and are handed over to be used as starting
static metrics as depicted in Figure 3.
While performing step (3), each sub-block computes the
output value as shown in (4).

) (4)

The output obtained in step (4) is provided to decoder input
after interleaving or de-interleaving in order to repeat the
procedures from step (2) by preset number of iterations.
After performing the above procedures by preset number of
iterations, final decoder output is obtained through a hard
decision.
In the proposed algorithm, since the static metrics at the
boundary of adjacent blocks are used as starting static
metrics, the effective length of training sequence is
increased by the sub-block length at the adjacent block. Due
to the increased length of training sequence, which will
enhance the reliability of starting static metrics, the final
performance is improved. Consequently, performance
degradation due to short training sequence can be reduced.
It rather enhances the decoding delay tremendously.
In short, by exchanging the static metrics between two
processors associated with adjacent sub-blocks, the
proposed algorithm has resolved the inherent problem of
block partitioning method, i.e., performance degradation
due to the small size of sub-blocks.

 3.3 IMPLEMENTATION

MAP decoder takes the largest part in the operation delay of
turbo decoder. Among the operations in the MAP decoder,
operations of (1) and (2) are the major part of MAP decoder.
Considering that the operations for (1) and (2) are iterative,
which means that the current values are determined by
previous values, we have performed the computation of (1)
and (2) using a parallel processing through the method of
exchanging the computed values of those two equations
after partitioning the entire data block into many sub-blocks.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

340

Figure 5. Operational architecture of GPU parallelization for
MAP decoder with 64 sub-block

Figure 5 illustrates kernel architecture designed for CUDA
programming of our implemented system. As shown in
Figure 5, parallelization processing of turbo decoding has
been performed efficiently by assigning as many threads in
each CUDA block as the number of states in each sub-block,
while CUDA blocks are assigned as many as the number of
sub-blocks of turbo decoder
In our implemented system, interleaving has also been
performed in high-speed operation using parallelization
technique. For this, the number of threads should be as large
as possible for the parallelized operation. Through the
parallelization coding, GPU can perform the turbo decoding
as discussed above. Since GPU is a floating-point processor,
the turbo decoding can be processed using large enough
soft-decision values.

4. PERFORMANCE EVALUATION

The operation time of our implemented system has been
measured using NVIDIA GeForce GTX260 to be compared
to the turbo decoder implemented with Texas Instruments’
TMS320C6201 [8].
For the experimental tests, a 1/3 coding rate turbo code
prepared in accordance with 3GPP release 9 [9] has been
adopted, while some algorithm to calculate the LLR values
[9] is used for the soft input of turbo decoder.
For the partitioning, 6144-bit data block is divided into a
single 6144-bit sub-block, 32 of 192-bit sub-blocks, 64 of
96-bit sub-blocks, and 128 of 48-bit sub-blocks.

Figure 6. BER performance

Figure 6 illustrates the BER performance of proposed
method according to various number of sub-blocks. As
shown in the figure, performance is degraded as the number
of sub-blocks is increased, which causes the block size to be
decreased.
 Table 1 shows the operation time required for turbo
decoder according to the various number of sub-blocks.

Number of Sub-
block

Total Processing
Time for 6144 bits

Processing
Speed

1 10.24ms 600Kbits/s
32 4.096ms 1.5Mbits/s
64 2.833ms 2.2Mbits/s
128 1.708ms 3.6Mbits/s

Table 1. Operation time taken for different number of sub-
blocks

From table 1, our implemented system is 2.5, 3.6 and 6
times faster than the turbo decoder implemented with Texas
Instruments’ TMS320C6201 providing 500k bits/s [8] of
processing speed when the number of sub-blocks is 32, 64
and 128, respectively.

<64 sub-blocks>
Method GPU time (µs) %GPU time
Interleaver+deinterleaver 19.104 0.674
Memcpy 10.576 0.373
Other calculation 96.587 3.409
MAP decoder 2706.96 95.543
Total time 2833.227 100

<128 sub-blocks>
Method GPU time (µs) %GPU time
Interleaver+deinterleaver 19.104 1.118
Memcpy 10.576 0.619
Other calculation 91.414 5.352
MAP decoder 1586.96 92.91
Total time 1708.054 100

Table 2. Computation time for the parallelized Turbo decoder

Table 2 shows a computation time taken for each operation
required in our implemented system, which has been
measured using CUDA Visual Profiler provided by
NVIDIA. In the table, “Memcpy” denotes the procedure of
memory copy between Central Processing Unit (CPU) and
GPU, while “other calculation” denotes the procedure of
data processing of decoder input and hard decision for the
final decoder output. In addition, “% GPU time” denotes the
portion of operation time taken by each function in the
entire GPU processing time.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

341

Table 2 illustrates the portion of MAP decoder in the entire
processing time required to turbo decoder as a function of
the number of sub-blocks.
 From Table 2, it can be observed that the total processing
time is reduced by about 1.6 times as the number of sub-
blocks is increased by twice. Since the operation is not
partitioned at bridge areas where the values are exchanged
between sub-blocks and where the sub-blocks are divided
and merged, the operation time is enhanced only by 1.6
times instead of 2 times while the number of sub-blocks is
increased by twice. As the parallel processing in GPU can
be performed using a large number of threads
simultaneously, the speed-up operation can be further
enhanced as the number of sub-blocks is increased.

5. CONCLUSION

We designed and implemented a parallel processing turbo
decoder by fully exploiting the parallel processing capability
of GPU.
Operation speed in our implemented system has been shown
to be 1.5, 2.2 and 3.6 Mbits/s when the number of sub-
blocks is 32, 64 and 128, respectively, which means the
processing time can be saved further as the number of sub-
blocks is increased. The partitioning into 128 sub-blocks
provides about 6 times faster processing time compared to a
normal turbo decoder, the 0.15dB degradation seems to be
tolerable. It has also been found that our implemented
system with 128 sub-blocks is about 6 times faster than
TMS320C6201’s turbo decoder. From various experimental
tests, we conclude that the proposed turbo decoder which
fully exploits the parallel processing capability with the sub-
block partitioning is suitable for speed-up operation of
modern communications including LTE.

ACKNOWLEDGEMENTS

This research was supported by the ICT Standardization
program of MKE(The Ministry of Knowledge Economy)

6. REFERENCES
[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near
Shannon limit error-correcting coding and decoding :
Turbo-codes (1),” IEEE International Conference on
Communications. ICC, Vol.2,1993
[2] C. E. Shannon, “A Mathematical Theory of
Information” Bell Systems Technical Journal, Vol.27, 1948
[3] NVIDIA; “NVIDIA CUDA C Programming Guide”,
Ver.4.2, 2012
[4] Kim, J., Seungheon Hyeon, Seungwon Choi,
“Implementation of an SDR system using graphics
processing unit”, IEEE Communication Magazine, Vol.48,
2010.
[5] NVIDIA; “NVIDIA CUDA Programming Guide”,
Ver.2.2, 2010
[6] Jae-Ming Hsu and chin and Chin-Liang Wang, “A
parallel decoding scheme for Turbo codes,” IEEE
International Symposium on Circuits and Systems, Vol.4,
1998
[7] Seokyun Yun, Yeheskel Bar-Ness.Y, “Parallel MAP
algorithm for low latency turbo decoding,” IEEE
Communication Letters, Vol.6, 2002
[8] Yuansheng Song, Gongyuan Liu, Huiyang, “The
Implementation of Turbo Decoder on DSP in WCDMA
System,” IEEE International Conference on Wireless
Communicationm Networking and Mobile Computing,
Vol.2, 2005.
[9] 3G Generation Partnership Project(3GPP); Technical
Specification Group Radio Access Network; Evolved
Universal Terrestrial Radio Access (E-UTRA); multiplexing
and channel coding(Release 9)
[10] Surendra Raju, M., Annavajjala, R., & Chockalingam,
A., “BER analysis of QAM on fading channels with
transmit diversity,” IEEE Transactions on Wireless
Communications, Vol.5, 2006

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

342

